标签归档:X-ray

Is Medical Chest X-ray Data Anonymous?

With the rise and ever-increasing potential of deep learning techniques in recent years, publicly available medical data sets became a key factor to enable reproducible development of diagnostic algorithms in the medical domain. Medical data contains sensitive patient-related information and is therefore usually anonymized by removing patient identifiers, e.g., patient names before publication. To the best of our knowledge, we are the first to show that a well-trained deep learning system is able to recover the patient identity from chest X-ray data. We demonstrate this using the publicly available large-scale ChestX-ray14 dataset, a collection of 112,120 frontal-view chest X-ray images from 30,805 unique patients. Our verification system is able to identify whether two frontal chest X-ray images are from the same person with an AUC of 0.9940 and a classification accuracy of 95.55%. We further highlight that the proposed system is able to reveal the same person even ten and more years after the initial scan. When pursuing a retrieval approach, we observe an mAP@R of 0.9748 and a precision@1 of 0.9963. Based on this high identification rate, a potential attacker may leak patient-related information and additionally cross-reference images to obtain more information. Thus, there is a great risk of sensitive content falling into unauthorized hands or being disseminated against the will of the concerned patients. Especially during the COVID-19 pandemic, numerous chest X-ray datasets have been published to advance research. Therefore, such data may be vulnerable to potential attacks by deep learning-based re-identification algorithms.

https://arxiv.org/abs/2103.08562

随着近年来深度学习技术的发展,公开的医疗数据集称为诊断算法能够成功的关键因素之一。医疗数据包含敏感的个人信息,因此这些信息常常会被移除,例如病人的姓名。据我们所知,我们是第一个展示一个预训练的深度学习模型可以从X光数据中恢复病人的个人信息的研究小组。我们使用公认的Chest-ray14 数据集进行测试,这个数据集拥有112120前侧X光数据,由30805独立病人采集。我们的系统用可以有效识别两张X光图像是否来自同一个人,甚至两张图像的生成时间相差多年。基于这样的高识别率,一个潜在的攻击者可以泄露这些个人信息,并通过交叉对比获得更多的信息。因此,敏感信息的泄漏横在面临很高的风险。特别是对于COVID-19疫情,多个胸部X光数据集已经被公开。所以,这些数据的隐私应该被考虑进行有效保护。

CheXseen: Unseen Disease Detection for Deep Learning Interpretation of Chest X-rays

We systematically evaluate the performance of deep learning models in the presence of diseases not labeled for or present during training. First, we evaluate whether deep learning models trained on a subset of diseases (seen diseases) can detect the presence of any one of a larger set of diseases. We find that models tend to falsely classify diseases outside of the subset (unseen diseases) as “no disease”. Second, we evaluate whether models trained on seen diseases can detect seen diseases when co-occurring with diseases outside the subset (unseen diseases). We find that models are still able to detect seen diseases even when co-occurring with unseen diseases. Third, we evaluate whether feature representations learned by models may be used to detect the presence of unseen diseases given a small labeled set of unseen diseases. We find that the penultimate layer of the deep neural network provides useful features for unseen disease detection. Our results can inform the safe clinical deployment of deep learning models trained on a non-exhaustive set of disease classes.

https://arxiv.org/abs/2103.04590

我们系统地评估了深度学习模型在未标注疾病上性能表现。首先,我们评估了深度学习模型在较小地数据集上预训练后在新的疾病种类上地测试表现。其次,我们评估了深度学习模型是否能判别已见过和未见过疾病的混合情况。我们发现在已见过和未见过病症同时出现的时候,深度学习模型依旧能检测到已见过的疾病。最后,我们评估了特征表示是否能检测到未见过的疾病在只有少量标签的情况下。我们发现深度学习模型的倒数第二层可以为未见过的疾病提供有用的特征。我们的结果展示了在不详尽的疾病种类上训练的深度学习模型部署是安全的。