标签归档:Image Sythesis

High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network

Existing image-to-image translation (I2IT) methods are either constrained to low-resolution images or long inference time due to their heavy computational burden on the convolution of high-resolution feature maps. In this paper, we focus on speeding-up the high-resolution photorealistic I2IT tasks based on closed-form Laplacian pyramid decomposition and reconstruction. Specifically, we reveal that the attribute transformations, such as illumination and color manipulation, relate more to the low-frequency component, while the content details can be adaptively refined on high-frequency components. We consequently propose a Laplacian Pyramid Translation Network (LPTN) to simultaneously perform these two tasks, where we design a lightweight network for translating the low-frequency component with reduced resolution and a progressive masking strategy to efficiently refine the high-frequency ones. Our model avoids most of the heavy computation consumed by processing high-resolution feature maps and faithfully preserves the image details. Extensive experimental results on various tasks demonstrate that the proposed method can translate 4K images in real-time using one normal GPU while achieving comparable transformation performance against existing methods. 


现有的I2IT的方法被低分辨率图像和冗长的推理时间困扰。在本文中,我们通过闭合拉普拉斯金字塔进行分解和重建以完成高分辨图像的I2IT任务。我们发现光照和色彩变化更多的与图像的低频部分相关,而图像的内容与其高频部分相关。我们在这里提出一种拉普拉斯金字塔变换网络(LPTN), 这个轻量化的网络可以用低分辨率的形式转换低频特征并用一种渐进式的掩膜方式转换高频特征。我们的模型避免的大部分的复杂计算同时保持了尽量多的图像细节。在实验中,我们的模型可以实现实时4k分辨率的图像风格迁移。

DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

We introduce DatasetGAN: an automatic procedure to generate massive datasets of high-quality semantically segmented images requiring minimal human effort. Current deep networks are extremely data-hungry, benefiting from training on large-scale datasets, which are time consuming to annotate. Our method relies on the power of recent GANs to generate realistic images. We show how the GAN latent code can be decoded to produce a semantic segmentation of the image. Training the decoder only needs a few labeled examples to generalize to the rest of the latent space, resulting in an infinite annotated dataset generator! These generated datasets can then be used for training any computer vision architecture just as real datasets are. As only a few images need to be manually segmented, it becomes possible to annotate images in extreme detail and generate datasets with rich object and part segmentations. To showcase the power of our approach, we generated datasets for 7 image segmentation tasks which include pixel-level labels for 34 human face parts, and 32 car parts. Our approach outperforms all semi-supervised baselines significantly and is on par with fully supervised methods, which in some cases require as much as 100x more annotated data as our method.



InfinityGAN: Towards Infinite-Resolution Image Synthesis

We present InfinityGAN, a method to generate arbitrary-resolution images. The problem is associated with several key challenges. First, scaling existing models to a high resolution is resource-constrained, both in terms of computation and availability of high-resolution training data. Infinity-GAN trains and infers patch-by-patch seamlessly with low computational resources. Second, large images should be locally and globally consistent, avoid repetitive patterns, and look realistic. To address these, InfinityGAN takes global appearance, local structure and texture into account.With this formulation, we can generate images with resolution and level of detail not attainable before. Experimental evaluation supports that InfinityGAN generates imageswith superior global structure compared to baselines at the same time featuring parallelizable inference. Finally, we how several applications unlocked by our approach, such as fusing styles spatially, multi-modal outpainting and image inbetweening at arbitrary input and output resolutions



Few-shot Semantic Image Synthesis Using StyleGAN Prior

This paper tackles a challenging problem of generating photorealistic images from semantic layouts in few-shot scenarios where annotated training pairs are hardly available but pixel-wise annotation is quite costly. We present a training strategy that performs pseudo labeling of semantic masks using the StyleGAN prior. Our key idea is to construct a simple mapping between the StyleGAN feature and each semantic class from a few examples of semantic masks. With such mappings, we can generate an unlimited number of pseudo semantic masks from random noise to train an encoder for controlling a pre-trained StyleGAN generator. Although the pseudo semantic masks might be too coarse for previous approaches that require pixel-aligned masks, our framework can synthesize high-quality images from not only dense semantic masks but also sparse inputs such as landmarks and scribbles. Qualitative and quantitative results with various datasets demonstrate improvement over previous approaches with respect to layout fidelity and visual quality in as few as one- or five-shot settings.



Paint by Word

We investigate the problem of zero-shot semantic image painting. Instead of painting modifications into an image using only concrete colors or a finite set of semantic concepts, we ask how to create semantic paint based on open full-text descriptions: our goal is to be able to point to a location in a synthesized image and apply an arbitrary new concept such as “rustic” or “opulent” or “happy dog.” To do this, our method combines a state-of-the art generative model of realistic images with a state-of-the-art text-image semantic similarity network. We find that, to make large changes, it is important to use non-gradient methods to explore latent space, and it is important to relax the computations of the GAN to target changes to a specific region. We conduct user studies to compare our methods to several baselines.



HumanGAN: A Generative Model of Humans Images

Generative adversarial networks achieve great performance in photorealistic image synthesis in various domains, including human images. However, they usually employ latent vectors that encode the sampled outputs globally. This does not allow convenient control of semantically-relevant individual parts of the image, and is not able to draw samples that only differ in partial aspects, such as clothing style. We address these limitations and present a generative model for images of dressed humans offering control over pose, local body part appearance and garment style. This is the first method to solve various aspects of human image generation such as global appearance sampling, pose transfer, parts and garment transfer, and parts sampling jointly in a unified framework. As our model encodes part-based latent appearance vectors in a normalized pose-independent space and warps them to different poses, it preserves body and clothing appearance under varying posture. Experiments show that our flexible and general generative method outperforms task-specific baselines for pose-conditioned image generation, pose transfer and part sampling in terms of realism and output resolution.



K-Hairstyle: A Large-scale Korean hairstyle dataset for virtual hair editing and hairstyle classification

The hair and beauty industry is one of the fastest growing industries. This led to the development of various applications, such as virtual hair dyeing or hairstyle translations, to satisfy the need of the customers. Although there are several public hair datasets available for these applications, they consist of limited number of images with low resolution, which restrict their performance on high-quality hair editing. Therefore, we introduce a novel large-scale Korean hairstyle dataset, K-hairstyle, 256,679 with high-resolution images. In addition, K-hairstyle contains various hair attributes annotated by Korean expert hair stylists and hair segmentation masks. We validate the effectiveness of our dataset by leveraging several applications, such as hairstyle translation, and hair classification and hair retrieval. Furthermore, we will release K-hairstyle soon.


美发和美容产业是最近发展得最快的行业之一。它们的发展带动了许多类似于虚拟染发或者发型迁移等应用的发展。尽管现在已经有几个公开的发型数据集,但是都存在数据量小或者低分辨率等等问题,这限制了发型编辑技术的发展。所以我们介绍一个大规模的韩国发型数据集K-hairstyle. 它拥有256,679张高分辨率的图像。另外,数据集还包含多种由韩国发型师标注的发型属性标签以及分割掩膜。我们在诸如发型迁移,发型分类以及发型检索应用中测试和验证了我们的数据集。

Crop mapping from image time series: deep learning with multi-scale label hierarchies

The aim of this paper is to map agricultural crops by classifying satellite image time series. Domain experts in agriculture work with crop type labels that are organised in a hierarchical tree structure, where coarse classes (like orchards) are subdivided into finer ones (like apples, pears, vines, etc.). We develop a crop classification method that exploits this expert knowledge and significantly improves the mapping of rare crop types. The three-level label hierarchy is encoded in a convolutional, recurrent neural network (convRNN), such that for each pixel the model predicts three labels at different level of granularity. This end-to-end trainable, hierarchical network architecture allows the model to learn joint feature representations of rare classes (e.g., apples, pears) at a coarser level (e.g., orchard), thereby boosting classification performance at the fine-grained level. Additionally, labelling at different granularity also makes it possible to adjust the output according to the classification scores; as coarser labels with high confidence are sometimes more useful for agricultural practice than fine-grained but very uncertain labels. We validate the proposed method on a new, large dataset that we make public. ZueriCrop covers an area of 50 km x 48 km in the Swiss cantons of Zurich and Thurgau with a total of 116’000 individual fields spanning 48 crop classes, and 28,000 (multi-temporal) image patches from Sentinel-2. We compare our proposed hierarchical convRNN model with several baselines, including methods designed for imbalanced class distributions. The hierarchical approach performs superior by at least 9.9 percentage points in F1-score.



TransGAN: Two Transformers Can Make One Strong GAN

The recent explosive interest on transformers has suggested their potential to become powerful “universal” models for computer vision tasks, such as classification, detection, and segmentation. However, how further transformers can go – are they ready to take some more notoriously difficult vision tasks, e.g., generative adversarial networks (GANs)?Driven by that curiosity, we conduct the first pilot study in building a GAN completely free of convolutions, using only pure transformer-based architectures. Our vanilla GAN architecture, dubbed TransGAN, consists of a memory-friendly transformer-based generator that progressively increases feature resolution while decreasing embedding dimension, and a patch-level discriminator that is also transformer-based. We then demonstrate TransGAN to notably benefit from data augmentations (more than standard GANs), a multi-task co-training strategy for the generator, and a locally initialized self-attention that emphasizes the neighborhood smoothness of natural images. Equipped with those findings, TransGAN can effectively scale up with bigger models and high-resolution image datasets. Specifically, our best architecture achieves highly competitive performance compared to current state-of-the-art GANs based on convolutional backbones. Specifically, TransGAN sets new state-of-the-art IS score of 10.10 and FID score of 25.32 on STL-10. It also reaches competitive 8.64 IS score and 11.89 FID score on Cifar-10, and 12.23 FID score on CelebA 64×64, respectively. We also conclude with a discussion of the current limitations and future potential of TransGAN.


最近关于transformer的爆发式的关注证明了它有在例如分类,检测或者分割等计算机视觉任务上成为通用模型的潜力。但是,transformer可以走多远呢?它能够解决例如GANs等一些困难的视觉任务了吗?好奇心驱使我们完成了第一个完全非卷积的GAN,这个GAN完全由transformer构成。我们的GAN架构被成为TransGAN. 它可以分为以下几个部分:内存友好的基于transformer的生成器,这个生成器通过渐进式地提升特征分辨率且降低特征的尺寸。一个patch级别的基于transformer的判别器。然后我们展示了TransGAN相对与其他的GANs能够更好地利用数据增广来提升性能。我们还提出了一个多任务的联合训练策略以更好地训练生成器,使得生成器可以用过局部自注意力机制感知图像的邻域平滑度。通过以上的发现,TransGAN得以适应更大且更高清的数据集。实验证明TransGAN拥有SOTA的性能。

SWAGAN: A Style-based Wavelet-driven Generative Model

In recent years, considerable progress has been made in the visual quality of Generative Adversarial Networks (GANs). Even so, these networks still suffer from degradation in quality for high-frequency content, stemming from a spectrally biased architecture, and similarly unfavorable loss functions. To address this issue, we present a novel general-purpose Style and WAvelet based GAN (SWAGAN) that implements progressive generation in the frequency domain. SWAGAN incorporates wavelets throughout its generator and discriminator architectures, enforcing a frequency-aware latent representation at every step of the way. This approach yields enhancements in the visual quality of the generated images, and considerably increases computational performance. We demonstrate the advantage of our method by integrating it into the SyleGAN2 framework, and verifying that content generation in the wavelet domain leads to higher quality images with more realistic high-frequency content. Furthermore, we verify that our model’s latent space retains the qualities that allow StyleGAN to serve as a basis for a multitude of editing tasks, and show that our frequency-aware approach also induces improved downstream visual quality.