标签归档:Data Augmentation

DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

We introduce DatasetGAN: an automatic procedure to generate massive datasets of high-quality semantically segmented images requiring minimal human effort. Current deep networks are extremely data-hungry, benefiting from training on large-scale datasets, which are time consuming to annotate. Our method relies on the power of recent GANs to generate realistic images. We show how the GAN latent code can be decoded to produce a semantic segmentation of the image. Training the decoder only needs a few labeled examples to generalize to the rest of the latent space, resulting in an infinite annotated dataset generator! These generated datasets can then be used for training any computer vision architecture just as real datasets are. As only a few images need to be manually segmented, it becomes possible to annotate images in extreme detail and generate datasets with rich object and part segmentations. To showcase the power of our approach, we generated datasets for 7 image segmentation tasks which include pixel-level labels for 34 human face parts, and 32 car parts. Our approach outperforms all semi-supervised baselines significantly and is on par with fully supervised methods, which in some cases require as much as 100x more annotated data as our method.



Improving Object Detection in Art Images Using Only Style Transfer

Despite recent advances in object detection using deep learning neural networks, these neural networks still struggle to identify objects in art images such as paintings and drawings. This challenge is known as the cross depiction problem and it stems in part from the tendency of neural networks to prioritize identification of an object’s texture over its shape. In this paper we propose and evaluate a process for training neural networks to localize objects – specifically people – in art images. We generate a large dataset for training and validation by modifying the images in the COCO dataset using AdaIn style transfer. This dataset is used to fine-tune a Faster R-CNN object detection network, which is then tested on the existing People-Art testing dataset. The result is a significant improvement on the state of the art and a new way forward for creating datasets to train neural networks to process art images.


虽然最近深度学习在目标检测领域有了长足发展,但是这些网络在艺术作品如画作等数据上的表现不佳。这个问题主要是因为神经网络倾向于通过目标的纹理而非形状进行推断。在本文中我们提出并且验证一种训练检测器的流程,这个流程训练的是对于艺术作品中的人物。我们使用AdaIn风格迁移将COCO数据集构建成一个庞大的数据集,然后在People-Art testing数据集上进行测试。结果显示我们的方法有效地提高了现有检测器在艺术作品上的检测表现。

RoI Tanh-polar Transformer Network for Face Parsing in the Wild

Face parsing aims to predict pixel-wise labels for facial components of a target face in an image. Existing approaches usually crop the target face from the input image with respect to a bounding box calculated during pre-processing, and thus can only parse inner facial Regions of Interest (RoIs). Peripheral regions like hair are ignored and nearby faces that are partially included in the bounding box can cause distractions. Moreover, these methods are only trained and evaluated on near-frontal portrait images and thus their performance for in-the-wild cases were unexplored. To address these issues, this paper makes three contributions. First, we introduce iBugMask dataset for face parsing in the wild containing 1,000 manually annotated images with large variations in sizes, poses, expressions and background, and Helen-LP, a large-pose training set containing 21,866 images generated using head pose augmentation. Second, we propose RoI Tanh-polar transform that warps the whole image to a Tanh-polar representation with a fixed ratio between the face area and the context, guided by the target bounding box. The new representation contains all information in the original image, and allows for rotation equivariance in the convolutional neural networks (CNNs). Third, we propose a hybrid residual representation learning block, coined HybridBlock, that contains convolutional layers in both the Tanh-polar space and the Tanh-Cartesian space, allowing for receptive fields of different shapes in CNNs. Through extensive experiments, we show that the proposed method significantly improves the state-of-the-art for face parsing in the wild.


面部分析任务致力于对面部进行像素级别的预测。现有的方法经常框选图像的各个部分进行预处理,所以只能处理面部内部的ROI。面部外围例如头发的区域被忽略,而边缘区域常常也会包括进矩形框中而带来干扰。另外,这些方法往往都只在对齐面部图像上进行训练和测试,因此它们的性能没有在真实场景的数据集上进行测试。为了解决上述问题,本文提出了IBugMask数据集,这个数据集包含1000张手工标注的拥有多尺寸多姿态多表情和多种背景的图像。我们还提出了Helen-LP,一个大型的姿态训练集,它包括21866张由真实面部图像扩增出来的图像。然后,我们还提出了RoI Tanh-polar 变换,这个变换可以以固定的面部和上下文的比例将图像转换到anh-polar表示,这个转换由目标矩形框引导。新的表示包含原始图像所有的信息,并且在CNNs中保证旋转不变性。最后我们提出了一种混合的残差学习模块,称为HybridBlock。它包含Tanh-polar空间和Tanh-Cartesian空间的卷积层,允许不同尺寸的感受野。通过实验,证明了我们的模型可以在真实的数据集上取得SOTA的评价。

Learning domain-agnostic visual representation for computational pathology using medically-irrelevant style transfer augmentation

Suboptimal generalization of machine learning models on unseen data is a key challenge which hampers the clinical applicability of such models to medical imaging. Although various methods such as domain adaptation and domain generalization have evolved to combat this challenge, learning robust and generalizable representations is core to medical image understanding, and continues to be a problem. Here, we propose STRAP (Style TRansfer Augmentation for histoPathology), a form of data augmentation based on random style transfer from artistic paintings, for learning domain-agnostic visual representations in computational pathology. Style transfer replaces the low-level texture content of images with the uninformative style of randomly selected artistic paintings, while preserving high-level semantic content. This improves robustness to domain shift and can be used as a simple yet powerful tool for learning domain-agnostic representations. We demonstrate that STRAP leads to state-of-the-art performance, particularly in the presence of domain shifts, on a particular classification task of predicting microsatellite status in colorectal cancer using digitized histopathology images.



Training Generative Adversarial Networks with Limited Data

Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmentation mechanism that significantly stabilizes training in limited data regimes. The approach does not require changes to loss functions or network architectures, and is applicable both when training from scratch and when fine-tuning an existing GAN on another dataset. We demonstrate, on several datasets, that good results are now possible using only a few thousand training images, often matching StyleGAN2 results with an order of magnitude fewer images. We expect this to open up new application domains for GANs. We also find that the widely used CIFAR-10 is, in fact, a limited data benchmark, and improve the record FID from 5.59 to 2.42.



AutoSimulate: (Quickly) Learning Synthetic Data Generation

PDF] AutoSimulate: (Quickly) Learning Synthetic Data Generation | Semantic  Scholar

Simulation is increasingly being used for generating large labelled datasets in many machine learning problems. Recent methods have focused on adjusting simulator parameters with the goal of maximising accuracy on a validation task, usually relying on REINFORCE-like gradient estimators. However these approaches are very expensive as they treat the entire data generation, model training, and validation pipeline as a black-box and require multiple costly objective evaluations at each iteration. We propose an efficient alternative for optimal synthetic data generation, based on a novel differentiable approximation of the objective. This allows us to optimize the simulator, which may be non-differentiable, requiring only one objective evaluation at each iteration with a little overhead. We demonstrate on a state-of-the-art photorealistic renderer that the proposed method finds the optimal data distribution faster (up to 50x), with significantly reduced training data generation (up to 30x) and better accuracy (+8.7%) on real-world test datasets than previous methods.



Data Augmentation Using Generative Adversarial Network

Effective training of neural networks requires much data. In the low-data regime, parameters are underdetermined, and learnt networks generalise poorly. Data Augmentation alleviates this by using existing data more effectively. However standard data augmentation produces only limited plausible alternative data. Given there is potential to generate a much broader set of augmentations, we design and train a generative model to do data augmentation. The model, based on image conditional Generative Adversarial Networks, takes data from a source domain and learns to take any data item and generalise it to generate other within-class data items. As this generative process does not depend on the classes themselves, it can be applied to novel unseen classes of data. We show that a Data Augmentation Generative Adversarial Network (DAGAN) augments standard vanilla classifiers well. We also show a DAGAN can enhance few-shot learning systems such as Matching Networks. We demonstrate these approaches on Omniglot, on EMNIST having learnt the DAGAN on Omniglot, and VGG-Face data. In our experiments we can see over 13% increase in accuracy in the low-data regime experiments in Omniglot (from 69% to 82%), EMNIST (73.9% to 76%) and VGG-Face (4.5% to 12%); in Matching Networks for Omniglot we observe an increase of 0.5% (from 96.9% to 97.4%) and an increase of 1.8% in EMNIST (from 59.5% to 61.3%).



AutoAugment: Learning Augmentation Strategies from Data

Data augmentation is an effective technique for improving the accuracy of modern image classifiers. However, current data augmentation implementations are manually designed. In this paper, we describe a simple procedure called AutoAugment to automatically search for improved data augmentation policies. In our implementation, we have designed a search space where a policy consists of many sub- policies, one of which is randomly chosen for each image in each mini-batch. A sub-policy consists of two operations, each operation being an image processing function such as translation, rotation, or shearing, and the probabilities and magnitudes with which the functions are applied. We use a search algorithm to find the best policy such that the neural network yields the highest validation accuracy on a target dataset. Our method achieves state-of-the-art accuracy on CIFAR-10, CIFAR-100, SVHN, and ImageNet (without additional data). On ImageNet, we attain a Top-1 accuracy of 83.5% which is 0.4% better than the previous record of 83.1%. On CIFAR-10, we achieve an error rate of 1.5%, which is 0.6% better than the previous state-of-the-art. Augmentation policies we find are transferable between datasets. The policy learned on ImageNet transfers well to achieve significant improvements on other datasets, such as Oxford Flowers, Caltech-101, Oxford-IIT Pets, FGVC Air- craft, and Stanford Cars.



Training Generative Adversarial Networks with Limited Data

Stylegan – Towards Data Science








  • ADA可以实现少样本数据下的较好质量的生成
  • ADA可以保证数据扩充前提下防治数据的”泄漏”
  • 自适应的判别器增强保证了模型不轻易出现过拟合,模型更加稳定

Data augmentation using learned transformations for one-shot medical image segmentation

PDF] Data Augmentation Using Learned Transformations for One-Shot Medical  Image Segmentation | Semantic Scholar

Image segmentation is an important task in many medical applications. Methods based on convolutional neural networks attain state-of-the-art accuracy; however, they typically rely on supervised training with large labeled datasets. Labeling medical images requires significant expertise and time, and typical hand-tuned approaches for data augmentation fail to capture the complex variations in such images.
We present an automated data augmentation method for synthesizing labeled medical images. We demonstrate our method on the task of segmenting magnetic resonance imaging (MRI) brain scans. Our method requires only a single segmented scan, and leverages other unlabeled scans in a semi-supervised approach. We learn a model of transformations from the images, and use the model along with the labeled example to synthesize additional labeled examples. Each transformation is comprised of a spatial deformation field and an intensity change, enabling the synthesis of complex effects such as variations in anatomy and image acquisition procedures. We show that training a supervised segmenter with these new examples provides significant improvements over state-of-the-art methods for one-shot biomedical image segmentation.