标签归档:Action Recognition

ViViT: A Video Vision Transformer

We present pure-transformer based models for video classification, drawing upon the recent success of such models in image classification. Our model extracts spatio-temporal tokens from the input video, which are then encoded by a series of transformer layers. In order to handle the long sequences of tokens encountered in video, we propose several, efficient variants of our model which factorise the spatial- and temporal-dimensions of the input. Although transformer-based models are known to only be effective when large training datasets are available, we show how we can effectively regularise the model during training and leverage pretrained image models to be able to train on comparatively small datasets. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple video classification benchmarks including Kinetics 400 and 600, Epic Kitchens, Something-Something v2 and Moments in Time, outperforming prior methods based on deep 3D convolutional networks. To facilitate further research, we will release code and models.



An Image is Worth 16×16 Words, What is a Video Worth?

Leading methods in the domain of action recognition try to distill information from both the spatial and temporal dimensions of an input video. Methods that reach State of the Art (SotA) accuracy, usually make use of 3D convolution layers as a way to abstract the temporal information from video frames. The use of such convolutions requires sampling short clips from the input video, where each clip is a collection of closely sampled frames. Since each short clip covers a small fraction of an input video, multiple clips are sampled at inference in order to cover the whole temporal length of the video. This leads to increased computational load and is impractical for real-world applications. We address the computational bottleneck by significantly reducing the number of frames required for inference. Our approach relies on a temporal transformer that applies global attention over video frames, and thus better exploits the salient information in each frame. Therefore our approach is very input efficient, and can achieve SotA results (on Kinetics dataset) with a fraction of the data (frames per video), computation and latency. Specifically on Kinetics-400, we reach 78.8 top-1 accuracy with ×30 less frames per video, and ×40 faster inference than the current leading method. 



Video Transformer Network

This paper presents VTN, a transformer-based framework for video recognition. Inspired by recent developments in vision transformers, we ditch the standard approach in video action recognition that relies on 3D ConvNets and introduce a method that classifies actions by attending to the entire video sequence information. Our approach is generic and builds on top of any given 2D spatial network. In terms of wall runtime, it trains 16.1× faster and runs 5.1× faster during inference while maintaining competitive accuracy compared to other state-of-the-art methods. It enables whole video analysis, via a single end-to-end pass, while requiring 1.5× fewer GFLOPs. We report competitive results on Kinetics-400 and present an ablation study of VTN properties and the trade-off between accuracy and inference speed. We hope our approach will serve as a new baseline and start a fresh line of research in the video recognition domain.


在这篇文章中我们提出VTN,一种基于Transformer的视频识别框架。受到最近视觉Transformer的启发,我们发现现有的基本动作识别算法都是依赖3D卷积网络,而我们提出一种方法可以通过获取整个视频序列的信息做出预测的算法。我们的方法可以与任意2D空间网络结合,它可以比现有的SOTA方法训练上快16.1以及在推理的时候快5.1倍并保持相似的性能。当进行全局推理的时候,它对算力的需要少1.5 GFLOPs. 我们在Kinetics-400上展示了优异的性能,并且在消融实验中验证了VTN的性质以及如何平衡精确度和推理速度。我们希望我们的方法可以成为新的baseline,并且在视频识别领域占有一席之地。

HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation

HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose  Estimation - YouTube

Bottom-up human pose estimation methods have difficulties in predicting the correct pose for small persons due to challenges in scale variation. In this paper, we present HigherHRNet: a novel bottom-up human pose estimation method for learning scale-aware representations using high-resolution feature pyramids. Equipped with multi-resolution supervision for training and multi-resolution aggregation for inference, the proposed approach is able to solve the scale variation challenge in bottom-up multi-person pose estimation and localize keypoints more precisely, especially for small person. The feature pyramid in HigherHRNet consists of feature map outputs from HRNet and upsampled higher-resolution outputs through a transposed convolution. HigherHRNet outperforms the previous best bottom-up method by 2.5% AP for medium person on COCO test-dev, showing its effectiveness in handling scale variation. Furthermore, HigherHRNet achieves new state-of-the-art result on COCO test-dev (70.5% AP) without using refinement or other post-processing techniques, surpassing all existing bottom-up methods. HigherHRNet even surpasses all top-down methods on CrowdPose test (67.6% AP), suggesting its robustness in crowded scene. The code and models are available at https://github.com/HRNet/Higher-HRNet-Human-Pose-Estimation.


由下到上的人体姿态识别方法对于小尺寸的人体的识别存在困难,因为它们很难适应尺寸的变化。本文中提出一种由下到上的姿态识别方法HigherHRNet,核心在于使用高分辨率特征金字塔学习尺寸变化的表示。使用多分辨率监督学习和多分辨率聚合方式推理,本文提出的模型可以解决尺寸变化的问题。HigherHRNet 中使用的特征金字塔由HRNet输出的特征和向上抽样的特征组成。

NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding

Research on depth-based human activity analysis achieved outstanding performance and demonstrated the effectiveness of 3D representation for action recognition. The existing depth-based and RGB+D-based action recognition benchmarks have a number of limitations, including the lack of large-scale training samples, realistic number of distinct class categories, diversity in camera views, varied environmental conditions, and variety of human subjects. In this work, we introduce a large-scale dataset for RGB+D human action recognition, which is collected from 106 distinct subjects and contains more than 114 thousand video samples and 8 million frames. This dataset contains 120 different action classes including daily, mutual, and health-related activities. We evaluate the performance of a series of existing 3D activity analysis methods on this dataset, and show the advantage of applying deep learning methods for 3D-based human action recognition. Furthermore, we investigate a novel one-shot 3D activity recognition problem on our dataset, and a simple yet effective Action-Part Semantic Relevance-aware (APSR) framework is proposed for this task, which yields promising results for recognition of the novel action classes. We believe the introduction of this large-scale dataset will enable the community to apply, adapt, and develop various data-hungry learning techniques for depth-based and RGB+D-based human activity understanding. [The dataset is available at: http://rose1.ntu.edu.sg/Datasets/actionRecognition.asp]



Deep High-Resolution Representation Learning for Human Pose Estimation

Deep High-Resolution Representation Learning

In this paper, we are interested in the human pose estimation problem with a focus on learning reliable high-resolution representations. Most existing methods recover high-resolution representations from low-resolution representations produced by a high-to-low resolution network. Instead, our proposed network maintains high-resolution representations through the whole process. We start from a high-resolution subnetwork as the first stage, gradually add high-to-low resolution subnetworks one by one to form more stages, and connect the mutli-resolution subnetworks in parallel. We conduct repeated multi-scale fusions such that each of the high-to-low resolution representations receives information from other parallel representations over and over, leading to rich high-resolution representations. As a result, the predicted keypoint heatmap is potentially more accurate and spatially more precise. We empirically demonstrate the effectiveness of our network through the superior pose estimation results over two benchmark datasets: The COCO keypoint detection dataset and the MPII Human Pose dataset. In addition, we show the superiority of our network in pose tracking on the PoseTrack dataset. The code and models have been publicly available at https://github.com/leoxiaobin/deep-high-resolution-net.pytorch.



Deep Attention Network for Egocentric Action Recognition

Deep Attention Network for Egocentric Action Recognition | Semantic Scholar

Recognizing a camera wearer’s actions from videos captured by an egocentric camera is a challenging task. In this paper, we employ a two-stream deep neural network composed of an appearance-based stream and a motion-based stream to recognize egocentric actions. Based on the insight that human action and gaze behavior are highly coordinated in object manipulation tasks, we propose a spatial attention network to predict human gaze in the form of attention map. The attention map helps each of the two streams to focus on the most relevant spatial region of the video frames to predict actions. To better model the temporal structure of the videos, a temporal network is proposed. The temporal network incorporates bi-directional long short-term memory to model the long-range dependencies to recognize egocentric actions. The experimental results demonstrate that our method is able to predict attention maps that are consistent with human attention and achieve competitive action recognition performance with the state-of-the-art methods on the GTEA Gaze and GTEA Gaze+ datasets.



Infrared and 3D skeleton feature fusion for RGB-D action recognition

A challenge of skeleton-based action recognition is the difficulty to classify actions with similar motions and object-related actions. Visual clues from other streams help in that regard. RGB data are sensible to illumination conditions, thus unusable in the dark. To alleviate this issue and still benefit from a visual stream, we propose a modular network (FUSION) combining skeleton and infrared data. A 2D convolutional neural network (CNN) is used as a pose module to extract features from skeleton data. A 3D CNN is used as an infrared module to extract visual cues from videos. Both feature vectors are then concatenated and exploited conjointly using a multilayer perceptron (MLP). Skeleton data also condition the infrared videos, providing a crop around the performing subjects and thus virtually focusing the attention of the infrared module. Ablation studies show that using pre-trained networks on other large scale datasets as our modules and data augmentation yield considerable improvements on the action classification accuracy. The strong contribution of our cropping strategy is also demonstrated. We evaluate our method on the NTU RGB+D dataset, the largest dataset for human action recognition from depth cameras, and report state-of-the-art performances.


基于骨架的动作识别算法难以识别微小的动作和物品有关的行为,而基于RGB的方法又容易收到光照、场景的影响。所以本文提出了一种基于骨骼和红外的融合动作识别模型,模型通过一个2D网络提取骨骼特征,一个3D网络提取红外视觉特征,拼接之后通过MLP给出动作类别。骨骼也可以作为红外图像的条件,为其挑选合适的关注位置。本文提出的模型在NTU RGB+D数据集上取得了SOTA的评价。