ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks

Transformers at NeurIPS 2019. Papers related to transformers at… | by Pavel  Gladkov | Towards Data Science

We present ViLBERT (short for Vision-and-Language BERT), a model for learning task-agnostic joint representations of image content and natural language. We extend the popular BERT architecture to a multi-modal two-stream model, processing both visual and textual inputs in separate streams that interact through co-attentional transformer layers. We pretrain our model through two proxy tasks on the large, automatically collected Conceptual Captions dataset and then transfer it to multiple established vision-and-language tasks, visual question answering, visual commonsense reasoning, referring expressions, and caption-based image retrieval by making only minor additions to the base architecture. We observe significant improvements across tasks compared to existing task-specific models achieving state-of-the-art on all four tasks. Our work represents a shift away from learning groundings between vision and language only as part of task training and towards treating visual grounding as a pretrainable and transferable capability.



邮箱地址不会被公开。 必填项已用*标注