Context-aware Feature Generation for Zero-shot Semantic Segmentation

Context-aware Feature Generation for Zero-shot Semantic Segmentation |  Papers With Code



Existing semantic segmentation models heavily rely on dense pixelwise annotations. To reduce the annotation pressure, we focus on a challenging task named zero-shot semantic segmentation, which aims to segment unseen objects with zero annotations. This task can be accomplished by transferring knowledge across categories via semantic word embeddings. In this paper, we propose a novel context-aware feature generation method for zero-shot segmentation named CaGNet. In particular, with the observation that a pixel-wise feature highly depends on its contextual information, we
insert a contextual module in a segmentation network to capture the pixel-wise contextual information, which guides the process of generating more diverse and context-aware features from semantic word embeddings. Our method achieves state-of-the-art results on three benchmark datasets for zero-shot segmentation.



邮箱地址不会被公开。 必填项已用*标注