分类目录归档:Daily Paper Review

HumanGAN: A Generative Model of Humans Images

Generative adversarial networks achieve great performance in photorealistic image synthesis in various domains, including human images. However, they usually employ latent vectors that encode the sampled outputs globally. This does not allow convenient control of semantically-relevant individual parts of the image, and is not able to draw samples that only differ in partial aspects, such as clothing style. We address these limitations and present a generative model for images of dressed humans offering control over pose, local body part appearance and garment style. This is the first method to solve various aspects of human image generation such as global appearance sampling, pose transfer, parts and garment transfer, and parts sampling jointly in a unified framework. As our model encodes part-based latent appearance vectors in a normalized pose-independent space and warps them to different poses, it preserves body and clothing appearance under varying posture. Experiments show that our flexible and general generative method outperforms task-specific baselines for pose-conditioned image generation, pose transfer and part sampling in terms of realism and output resolution.



CheXseen: Unseen Disease Detection for Deep Learning Interpretation of Chest X-rays

We systematically evaluate the performance of deep learning models in the presence of diseases not labeled for or present during training. First, we evaluate whether deep learning models trained on a subset of diseases (seen diseases) can detect the presence of any one of a larger set of diseases. We find that models tend to falsely classify diseases outside of the subset (unseen diseases) as “no disease”. Second, we evaluate whether models trained on seen diseases can detect seen diseases when co-occurring with diseases outside the subset (unseen diseases). We find that models are still able to detect seen diseases even when co-occurring with unseen diseases. Third, we evaluate whether feature representations learned by models may be used to detect the presence of unseen diseases given a small labeled set of unseen diseases. We find that the penultimate layer of the deep neural network provides useful features for unseen disease detection. Our results can inform the safe clinical deployment of deep learning models trained on a non-exhaustive set of disease classes.



Attention is Not All You Need: Pure Attention Loses Rank Doubly Exponentially with Depth

Attention-based architectures have become ubiquitous in machine learning, yet our understanding of the reasons for their effectiveness remains limited. This work proposes a new way to understand self-attention networks: we show that their output can be decomposed into a sum of smaller terms, each involving the operation of a sequence of attention heads across layers. Using this decomposition, we prove that self-attention possesses a strong inductive bias towards “token uniformity”. Specifically, without skip connections or multi-layer perceptrons (MLPs), the output converges doubly exponentially to a rank-1 matrix. On the other hand, skip connections and MLPs stop the output from degeneration. Our experiments verify the identified convergence phenomena on different variants of standard transformer architectures.



TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

Medical image segmentation is an essential prerequisite for developing healthcare systems, especially for disease diagnosis and treatment planning. On various medical image segmentation tasks, the u-shaped architecture, also known as U-Net, has become the de-facto standard and achieved tremendous success. However, due to the intrinsic locality of convolution operations, U-Net generally demonstrates limitations in explicitly modeling long-range dependency. Transformers, designed for sequence-to-sequence prediction, have emerged as alternative architectures with innate global self-attention mechanisms, but can result in limited localization abilities due to insufficient low-level details. In this paper, we propose TransUNet, which merits both Transformers and U-Net, as a strong alternative for medical image segmentation. On one hand, the Transformer encodes tokenized image patches from a convolution neural network (CNN) feature map as the input sequence for extracting global contexts. On the other hand, the decoder upsamples the encoded features which are then combined with the high-resolution CNN feature maps to enable precise localization. 
We argue that Transformers can serve as strong encoders for medical image segmentation tasks, with the combination of U-Net to enhance finer details by recovering localized spatial information. TransUNet achieves superior performances to various competing methods on different medical applications including multi-organ segmentation and cardiac segmentation.



OmniNet: Omnidirectional Representations from Transformers

This paper proposes Omnidirectional Representations from Transformers (OmniNet). In OmniNet, instead of maintaining a strictly horizontal receptive field, each token is allowed to attend to all tokens in the entire network. This process can also be interpreted as a form of extreme or intensive attention mechanism that has the receptive field of the entire width and depth of the network. To this end, the omnidirectional attention is learned via a meta-learner, which is essentially another self-attention based model. In order to mitigate the computationally expensive costs of full receptive field attention, we leverage efficient self-attention models such as kernel-based (Choromanski et al.), low-rank attention (Wang et al.) and/or Big Bird (Zaheer et al.) as the meta-learner. Extensive experiments are conducted on autoregressive language modeling (LM1B, C4), Machine Translation, Long Range Arena (LRA), and Image Recognition. The experiments show that OmniNet achieves considerable improvements across these tasks, including achieving state-of-the-art performance on LM1B, WMT’14 En-De/En-Fr, and Long Range Arena. Moreover, using omnidirectional representation in Vision Transformers leads to significant improvements on image recognition tasks on both few-shot learning and fine-tuning setups.


本文提出一种全方向表示的Transformers (OmniNet). 在OmniNet中,我们没有严格地设定一个水平的感受野,而是任意一个token都可以接触到整个网络中的所有tokens. 这个过程也可以看作是一种扩展的注意力机制,这种注意力机制拥有整个网络的感受野。通过上述过程,OmniNet可以作为一个meta-leraner进行训练,这也是另一种基本的自注意力机制模型。为了缓解全局注意力机制带来的复杂计算量,我们参考了其他高效自注意力模型例如基于核,低阶注意力和Big Bird meta-learner. 实验证明,在NLP和视觉任务上OmniNet都有不错的效果。

Training Generative Adversarial Networks in One Stage

Generative Adversarial Networks (GANs) have demonstrated unprecedented success in various image generation tasks. The encouraging results, however, come at the price of a cumbersome training process, during which the generator and discriminator are alternately updated in two stages. In this paper, we investigate a general training scheme that enables training GANs efficiently in only one stage. Based on the adversarial losses of the generator and discriminator, we categorize GANs into two classes, Symmetric GANs and Asymmetric GANs, and introduce a novel gradient decomposition method to unify the two, allowing us to train both classes in one stage and hence alleviate the training effort. Computational analysis and experimental results on several datasets and various network architectures demonstrate that, the proposed one-stage training scheme yields a solid 1.5× acceleration over conventional training schemes, regardless of the network architectures of the generator and discriminator. Furthermore, we show that the proposed method is readily applicable to other adversarial-training scenarios, such as data-free knowledge distillation.



Transformer in Transformer

Transformer is a type of self-attention-based neural networks originally applied for NLP tasks. Recently, pure transformer-based models are proposed to solve computer vision problems. These visual transformers usually view an image as a sequence of patches while they ignore the intrinsic structure information inside each patch. In this paper, we propose a novel Transformer-iN-Transformer (TNT) model for modeling both patch-level and pixel-level representation. In each TNT block, an outer transformer block is utilized to process patch embeddings, and an inner transformer block extracts local features from pixel embeddings. The pixel-level feature is projected to the space of patch embedding by a linear transformation layer and then added into the patch. By stacking the TNT blocks, we build the TNT model for image recognition. Experiments on ImageNet benchmark and downstream tasks demonstrate the superiority and efficiency of the proposed TNT architecture. For example, our TNT achieves 81.3% top-1 accuracy on ImageNet which is 1.5% higher than that of DeiT with similar computational cost.



Convolution-Free Medical Image Segmentation using Transformers

Like other applications in computer vision, medical image segmentation has been most successfully addressed using deep learning models that rely on the convolution operation as their main building block. Convolutions enjoy important properties such as sparse interactions, weight sharing, and translation equivariance. These properties give convolutional neural networks (CNNs) a strong and useful inductive bias for vision tasks. In this work we show that a different method, based entirely on self-attention between neighboring image patches and without any convolution operations, can achieve competitive or better results. Given a 3D image block, our network divides it into n3 3D patches, where n=3 or 5 and computes a 1D embedding for each patch. The network predicts the segmentation map for the center patch of the block based on the self-attention between these patch embeddings. We show that the proposed model can achieve segmentation accuracies that are better than the state of the art CNNs on three datasets. We also propose methods for pre-training this model on large corpora of unlabeled images. Our experiments show that with pre-training the advantage of our proposed network over CNNs can be significant when labeled training data is small.



Do We Really Need Explicit Position Encodings for Vision Transformers?

Almost all visual transformers such as ViT or DeiT rely on predefined positional encodings to incorporate the order of each input token. These encodings are often implemented as learnable fixed-dimension vectors or sinusoidal functions of different frequencies, which are not possible to accommodate variable-length input sequences. This inevitably limits a wider application of transformers in vision, where many tasks require changing the input size on-the-fly. 
In this paper, we propose to employ a conditional position encoding scheme, which is conditioned on the local neighborhood of the input token. It is effortlessly implemented as what we call Position Encoding Generator (PEG), which can be seamlessly incorporated into the current transformer framework. Our new model with PEG is named Conditional Position encoding Visual Transformer (CPVT) and can naturally process the input sequences of arbitrary length. We demonstrate that CPVT can result in visually similar attention maps and even better performance than those with predefined positional encodings. We obtain state-of-the-art results on the ImageNet classification task compared with visual Transformers to date.



在本文中,我们提出了一种利用条件位置编码机制,这种机制以本地邻域输入token作为条件。我们由此提出位置编码生成器 (PEG), 它可以与现有的transformer架构无缝协作。另外,我们将提出的模型命名为条件位置编码视觉Transformer (CPVT). 它可以处理可变长度的输入序列。我们展示了CPVT可以获得视觉上相似的注意力图以及更优的性能相对于现有的预定义位置编码的方法,并且我们的模型在ImageNet分类任务上获得了SOTA的评价。

Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions

Although using convolutional neural networks (CNNs) as backbones achieves great successes in computer vision, this work investigates a simple backbone network useful for many dense prediction tasks without convolutions. Unlike the recently-proposed Transformer model (e.g., ViT) that is specially designed for image classification, we propose Pyramid Vision Transformer~(PVT), which overcomes the difficulties of porting Transformer to various dense prediction tasks. PVT has several merits compared to prior arts. (1) Different from ViT that typically has low-resolution outputs and high computational and memory cost, PVT can be not only trained on dense partitions of the image to achieve high output resolution, which is important for dense predictions but also using a progressive shrinking pyramid to reduce computations of large feature maps. (2) PVT inherits the advantages from both CNN and Transformer, making it a unified backbone in various vision tasks without convolutions by simply replacing CNN backbones. (3) We validate PVT by conducting extensive experiments, showing that it boosts the performance of many downstream tasks, e.g., object detection, semantic, and instance segmentation. For example, with a comparable number of parameters, RetinaNet+PVT achieves 40.4 AP on the COCO dataset, surpassing RetinNet+ResNet50 (36.3 AP) by 4.1 absolute AP. We hope PVT could serve as an alternative and useful backbone for pixel-level predictions and facilitate future researches.


虽然以卷积神经网络(CNNs)作为主干的模型在计算机视觉领域获得了巨大的成功,我们这篇文章会提出一个非卷积的简单网络,它将能够运用在许多预测任务上。不像最近提出的Transformer模型(例如ViT)是为了分类任务设计的,我们提出金字塔视觉Transformer (PVT). 我们的模型能够解决Transformer应用在密集预测任务时的种种困难。相比现有模型,PVT拥有以下优点:(1)不像现有ViT模型使用低分辨率输入且要求较大的计算量,PVT不仅仅能够在密集的图像区块上达到高分辨率输出,而且还运用渐进收缩金字塔去降低对于大尺寸特征图的计算量;(2)PVT从CNNs和Transformer那里继承了优点,这使得在许多视觉任务上统一简单将CNN主干进行替换无卷积的主干架构成为可能。(3)我们在例如目标检测、语义和实例分割任务等下游任务上对PVT模型进行了验证,实验结果说明我们的模型是SOTA的。